注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

平安甜橙博客

家俭则兴,人勤则健,能勤能俭,永不贫贱

 
 
 

日志

 
 
 
 

【转载】Homogeneous Systems  

2017-10-10 08:32:09|  分类: 线性代数 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
本文转载自jia_huiqiang《Homogeneous Systems》

reference:http://ltcconline.net/greenl/courses/203/Vectors/homogeneousSystems.htm

The Null Space

We have seen that the solution to the homogeneous system of equations 

        Ax  =  0

is a subspace of Rn.  We will now begin a discussion of how to find a basis for this system.  The approach we will take is by an illustrative example.

Example

Find a basis for the null space of the matrix        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

Solution

We have seen before that the null spaces of row equivalent matrices are the same.  Hence this question is equivalent to that of finding the null space of 

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

Now lets rewrite the system in equation form

        x1       -5x3 + 4x4 + 3x5  =  0
             x2 + 5x3 - 3x4 - 2x5  =  0

We can move the last three variable (the ones that are not corner variables) to the right hand side of the equations and add identity equations to get

        x1  =  5x3 - 4x4 - 3x5
        x2  =  -5x3 + 3x4 + 2x5
        x3  =     x3
        x4  =     x4
        x5  =     x5

It is useful to introduce parameters here

        s1  =  x3        s2  =  x4        s3  =  x5

so that

        x1  =  5s1 - 4s2 - 3s3
        x2  =  -5s1 + 3s2 + 2s3
        x3  =     s1
        x4  =              s2
        x5  =                       s3

and we can write this in vector form

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

We can see that the null space is represented by triplets (s1, s2, s3).  This is equivalent (isomorphic) to the space R3.  We select the standard basis 

        (1,0,0), (0,1,0), (0,0,1)

and come up with the basis for the null space

        {(5,-5,1,0,0), (-4,3,0,1,0), (-3,2,0,0,1)}

Example

Let 

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

Find the null space of A.  

 

Solution

As before, we find rref the matrix.

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

The corresponding equations are

        x1  =  0
        x2  =  0
        x3  =  0

and we see that the null space is the subspace containing only 0

Nonhomogeneous Systems

Now that we know how to solve the homogeneous equation

        Ax  =  0

we move on to nonhomogeneous systems

        Ax  =  b

We use the technique of rref as with homogeneous systems.  The next example illustrates.

 

Example

Solve

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

Solution

We solve the augmented matrix

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

and find the rref of the augmented matrix.  We get

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

This gives us the solution

        Homogeneous Systems - jia_huiqiang - 平安甜橙的博客

Notice that this is not a vector space (it does not contain the zero vector) so it does not make sense to ask for a basis for a null space.

The above answer shows that 

The solution to 

        Ax  =  b 

can be written in the form 

        x  =  xp + xh 

Where 

        xp is a particular solution to the nonhomogeneous equation

        xh represents the null space of A (the solution to the homogeneous equation)

 

 

  评论这张
 
阅读(6)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018